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Optimization: Your Language Model is Secretly a Reward Model”



Motivation

* RLHF is a complex and unstable process.
* Alot of knobs such as 5, controlling the KL divergence term.

e Can we directly optimize the preference function?
* Represented by the LLM itself.
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Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification

objective, without an explicit reward function or RL.



How to go about it?

* First, note that the optimal solution to this RL problem
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* How? Form the Lagrangian:
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How to go about it? (cont.)

* Now, for any particular value of (x, y), take the derivative of the
Lagrangian w.r.t. mg (y|x) and find its roots:
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* T (y]x)= exp {— %} Trer(Y]X) exp {; T (X, y)}



Can we decipher the reward function from m?

mo(y1x) = P {= 5} e (1) exp {2y (o)
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* Solving for ther.

* Therefore, 74 (x,y) = B log ;Z}%ljlg) + B log Z (x).




Now apply the loss for learning reward!

* Recall: Lgr(r4,D) = —E(zy, y)~p[108 0 (T (2, yu) — To(z,31))]
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* Now replace 7y (x,y) = f log + B log Z(x) into this Eq.

* |t becomes:
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How does the grad. update look like?

 Recall that:
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 Therefore:
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How to interpret this?

* It’s a weighted next token predictor loss.

* It gets larger weight whenever the relative ordering of the winner and
loser completions are not correct.

Vo Lppo(me; Tref) =

~BEagen|  9Gol@w) = foley)) | Tolognion | 3) — Vologn(u ) |
higher weight when r;\gard estimate i1s wrong  increase likzlirhood ofy,,  decrease lil:eTihood of y,




Tasks

* Positive sentiment generation: Given prefix of a movie review from
IMDb dataset, y is the completion with positive sentiment.

 Summarization: Summarize a given forum post from Reddit; the
TL;DR Reddit dataset.



IMDb Sentiment Generation
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Figure 2: Left. The frontier of expected reward vs KL to the reference policy. DPO provides the highest expected
reward for all KL values, demonstrating the quality of the optimization. Right. TL;DR summarization win
rates vs. human-written summaries, using GPT-4 as evaluator. DPO exceeds PPO’s best-case performance on
summarization, while being more robust to changes in the sampling temperature.
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