
Large Language Models
Parameter Efficient Fine Tuning I

Mohammad Hossein Rohban
Fall 2023

Courtesy: Most of the slides are adopted from the course COS 597G and the paper “Parameter-Efficient 
Transfer Learning for NLP” by Houlsby et al 2019, and AdapterHub and AdapterFusion by J. Pfeiffer et. al 

1



Motivation

• Large enough training set makes full 
fine tuning (on all weights) really 
good.
• But this needs enormous separate 

models to be stored.
• For each task
• For each user … 

• Fine tuning (FT) on a subset of the 
parameters is the way to go: 
parameter-efficiency.

2



Let’s discuss

• Which subset of parameter should be 
selected for FT? 
• Last few layers?
• Turns out to be inefficient.
• A lot of weights needed to reach full FT 

accuracy.
• Only some layers (variable FT)? 

3



Adapters comes in handy!

• Introduced in ICML 2019.

4



Adapters

5



Adapters (cont.)

• Bottleneck architecture.
• Inserted in both sublayers; right before the skip connection. 
• The adapter has a skip connection itself. Why?
• New layer normalization parameters per task as well.
• All other weights are frozen. 
• Near identity initialization of the adapter. How? Why?

6



Results

7



Results (cont.)

8



Results (cont.)

9



Most impactful layers?

10



Weight initialization impact?

11



Other versions of adapters (Pfeiffer et al.)

12



Modularity of Representation

• Surrounding parameters of an Adapter are fixed.
• What are the implications?
• At each layer the Adapter is forced to learn an output representation 

that is compatible with the subsequent transformer layers. 

13



Modularity of Representation (cont.)

14



AdapterHub

15



16



Is it all about reducing # of parameters?

• We also seek transfer of knowledge across the tasks!
• Want the model to work on low-resources languages.
• Can Adapters help mitigate these challenges?

17



Knowledge sharing across task

• Sequential Learning of tasks
• Catastrophic Forgetting 

• Multi-task Learning setup
• Need to have access to all tasks at once 
• Adding a new task would be a pain in the neck 
• Overfit to low-resource tasks
• Underfit to high-resource tasks

18



Problem Definition

• We are given

• And also

• The aim is to leverage C to improve single-task solving of Cm = (Dm, Lm)
with m being in {1, …, N}

19



AdapterFusion Method

• Step 1: Train an Adapter for each task separately (single-task 
adapters)

• Step 2: Fix both the parameters Θ (base transformer) and Φ!, … ,Φ"
(task adapters) introduce parameters Ψ# to combine task adapters 
for the m-th task.

20



AdapterFusion Method (cont.)
• Ψ# = Key, Value and Query 

matrices at layer l, i.e. Kl, Vl and 
Ql.
• At each layer, the output of the 

feed-forward sub-layer is taken 
as the query vector.
• The output of each adapter zl,t is 

used as input to both the value
and key transformations.

21



AdapterFusion Method (cont.)

22



Results

23



Results (cont.)

24



Results (cont.)

25



Surprise: Solve NER for a low-resource Lang.

• Given a general corpus of a low-resource language: Quechuan.
• No annotated dataset of NER is available in this language. 
• Do a quick research to find a solution for this problem. 

26


