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Motivation

* Providing proper task-specific context in the input can steer the LM to
solve the task more efficiently.

* Encoding of the original input x will change. Why?
* Guiding the model to extract relevant information from x.

* Does this context exist? How to find it?



Prefix Tuning

Prefix-Tuning: Optimizing Continuous Prompts for Generation

Xiang Lisa Li Percy Liang
Stanford University Stanford University
xlisali@stanford.edu pliang@cs.stanford.edu

* Prepend certain trainable prefix tokens to the input/hidden activations.
* The hidden representation becomes:

B {Pg[i, 1, if i € Pigy,
L LMy(zi, h<;i), otherwise.

* All hs would indeed be a function of the trainable parameters Py. Why? .



Fine-tuning
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Prefix Tuning (cont.)
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Prefix Tuning (cont.

Autoregressive Model (e.g. GPT2)
PREFIX

I il

y (target utterance)

S 1

i (source table)

Harry Potter , Education , Hogwarts [SEP] Harry Potter is graduated from Hogwarts .

Activation hq ho hs hs hs hg hy hg hg hig hi1 hi2 his his his

Summarization Example

Article: Scientists at University College London discovered people
tend to think that their hands are wider and their fingers are
shorter than they truly are.They say the confusion may lie in the
way the brain receives information from different parts of the
body.Distorted perception may dominate in some people, leading to
body image problems ... [ignoring 308 words] could be very
motivating for people with eating disorders to know that there was
a biological explanation for their experiences, rather than

Indexing L1 2J [E, 4 5 6 7 84] LE 10 11 12 13 14 15 4J ;geling it was their fault."
Summary: The brain naturally distorts body image -
Piax = [1,2] Xigw = [3,4,5,6,7,8] Yiax = [9,10,11,12,13, 14, 15] a finding which could explain eating disorders like
k?norexia, say experts.
Encoder-Decoder Model (e.g. BART) PREFIX
PREFIX & (source table) PREFIX’ Y (arget utterance) Table-to-text Example
l hi I ) Table: name[Clowns] customer-
Z Harry Potter , Education , Hogwarts { lr[SEP] Harry Potter is graduated from Hogwart! rating[1 out [Of 5] ]eatType [coffee
shop] food[Chinese] areal[riversidel
Activation  p, h, h3 hy hs hg hy hg hg  hio  hin hi2 bz hia his  hie Tz near[Clare Halll
Textual Description: Clowns is a
i ffee shop in the riverside area
i N ]

Pidx = [11 2] Xidx == [3’ 4, 5a 6’ 7, 8] Pidx += [97 10]

Y — 115 1213714715 16,1 7]

1 out of 5 . They serve Chinese

near Clare Hall that has a rating
[food :




Parametrization of Pg

* Directly optimizing Pg leads to unstable optimization.
* Slight drop in performance.

* Use a smaller Py as input to an MLP with shared trainable weights ¢.
*So Py = MLP(p(Pe’,).
 We can drop P, after training and use the result (Pyg).



Results

E2E WebNLG DART
BLEU NIST MET R-L CIDEr BLEU MET TER | BLEU MET TER | Mover BERT BLEURT
S U A S U A S U A
GPT-2MmeDpIUM
FINE-TUNE 682 862 46.2 71.0 247 |64.2 27.7 46.5 045 0.30 0.38 0.33 0.76 0.53| 46.2 0.39 0.46 0.50 0.94 0.39
FT-ToP2 68.1 859 46.0 70.8 241 |53.6 189 36.0 0.38 0.23 0.31 0.49 0.99 0.72| 41.0 0.34 0.56 0.43 0.93 0.21

ADAPTER(3%) 689 871 46.1 713 247 |604 483 549 043 038 041 035 045 039| 452 038 046 050 0.94 0.39
ADAPTER(0.1%) 663 841 45.0 69.8 240 (545 45.1 50.2 0.39 036 038 040 0.46 043 | 424 036 048 047 094 0.33
PREFIX(0.1%) 69.7 881 46.1 714 249 |629 456 551 044 038 041 035 049 041| 464 038 046 050 0.94 0.39

GPT-2LARGE
FINE-TUNE 68.5 878 46.0 699 245 653 43.1 555 0.46 0.38 042 033 053 042 470 039 046 0.51 0.94 0.40
Prefix 703 885 46.2 71.7 247 |63.4 4777 563 0.45 0.39 042 034 048 040 46.7 0.39 045 0.51 094 0.40
SOTA 68.6 870 453 70.8 2.37 ’ 63.9 52.8 57.1 046 041 044 - - - l - - - - - -

Table 1: Metrics (higher is better, except for TER) for table-to-text generation on E2E (left), WebNLG (middle)
and DART (right). With only 0.1% parameters, Prefix-tuning outperforms other lightweight baselines and achieves
a comparable performance with fine-tuning. The best score is boldfaced for both GPT-2ygprum and GPT-2p ArGE.



Qualitative Results on Table-to-Text (low data
setting)

Source name : The Eagle | type : coffee shop | food : Chinese | price : cheap | customer
rating : average | area : riverside | family friendly : no | near : Burger King

Prefix (50)  The Eagle is a cheap Chinese coffee shop located near Burger King.

Prefix (100) The Eagle is a cheap coffee shop located in the riverside near Burger King. It
has average customer ratings.

Prefix (200) The Eagle is a cheap Chinese coffee shop located in the riverside area near
Burger King. It has average customer ratings.

Prefix (500) The Eagle is a coffee shop that serves Chinese food. It is located in the riverside
area near Burger King. It has an average customer rating and is not family
friendly.

FT (50) The Eagle coffee shop is located in the riverside area near Burger King.

FT (100) The Eagle is a cheap coffee shop near Burger King in the riverside area. It has
a low customer rating and is not family friendly.

FT (200) The Eagle i1s a cheap Chinese coffee shop with a low customer rating. It is
located near Burger King in the riverside area.

FT (500) The Eagle is a cheap Chinese coffee shop with average customer ratings. It is
located in the riverside area near Burger King.




Prefix-tuning Outperforms FT in low-data

regimes
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Ablation (Prefix length)

ROUGE-2

ry Sl

Fii 88

20.0 -

1858

19.0 1

18,91

'/‘\_ .
2
o ROUGE-2
o ROUGE-L
0 100 200 300

Prefix Length (XSUM)

-0.480
£ 0.475
a o
L
+0.470F
—e— BLEU
—e— TER L 0.465
-0.460
0 10 20 30 40

Prefix Length (DART)

11



Ablation (Initialization of Prefixes)
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INTRINSIC DIMENSIONALITY EXPLAINS THE EFFEC-
TIVENESS OF LANGUAGE MODEL FINE-TUNING

Armen Aghajanyan, Luke Zettlemoyer, Sonal Gupta
Facebook
{armenag, 1sz, sonalgupta}@fb.com
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Intrinsic Dimensionality of a Model

* Model with trainable parameters 8° € RP.
* Map 0 to a lower dimensional space 8¢ € R€.
e Solve the optimization (training) in that space:

0P =06 + P(6%)

with 82 = P(8%) (FastFood Transform)

* Let dgy be the dimensionality that results to 90% of the performance
of full fine tuning.

 Structure aware intrinsic dimension 0 = 05, + A P(0%~™);
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LoRA (Low Rank Adaptation)

* Learned overparameterized models facilitate learning on a low
dimensional space.

* So ... weight updates could possibly be low rank.

h | I

Pretrained
Weights

16



LORA: LOW-RANK ADAPTATION OF LARGE LAN-
GUAGE MODELS

Edward Hu™ Yelong Shen™ Phillip Wallis Zeyuan Allen-Zhu
Yuanzhi Li Shean Wang Lu Wang Weizhu Chen

Microsoft Corporation

{edwardhu, yeshe, phwallis, zeyuana,

yuanzhil, swang, luw, wzchen}@microsoft.com
yuanzhil@andrew.cmu.edu

(Version 2)
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Problem Statement

* Given a pretrained autoregressive language model Py, (v]x).

* Also given a downstream conditional text generation task

Z ={(x;,yi)}i=1.n-
* e.g. NL2SQL x; = seq. of natural lang. query; y,=SQL command

* Update the weights to @y + AP to optimize:

ly|

max YD log (Po(yilz, y<t))
(z,y)€Z t=1

* Now let A®(®) be a function of ©, which lives in a lower dimensional
space.



Solution

* We let A®(O®) = BA, so © = (4, B).

-

 Random Gaussian initialization of A, and B = 0. Why?
* Only weights in the self-attention module are trainable; MLPs are frozen.
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Results

Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoBpyee (FT)* 1250M| 87.6 94.8 90.2 63.6 928 919 78.7 91.2 86.4
RoBypase (BitFit)* 0.1IM| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoByase (AdptD)* 03M|87.1+09 94211 885411 60.8+4 93.111 90219 71.5427 89.7+3 844
RoBbase (Adpt°)* 0.9M (87.3+1 94.7+3 88.4+1 62.6+9 93.0+2 90.6+0 75.9+22 903+ 854
RoBpase (LORA) 0.3M|(87.5+3 95.1+2 89.7+7 634412 93.3+3 90.8+1 86.6+7 91.51, 87.2
RoBiage (FT)* 355.0M| 90.2 96.4 90.9 68.0 947 92.2 86.6 92.4 88.9
ROB[arge (LORA) 0.8M 90-6:t.2 96.2j:.5 90.9:1:1‘2 68.2:}:1,9 94.9j:.3 91.6;t,1 87.4:t2,5 92.6;i:.2 89.0
RoBiarge (AdptP)T 3.0M|[90.2+3 96.1+3 90.2+7 68.3+10 94.8+> 91.9+, 83.8+29 92.1+7 884
ROBiurge (Adpt”)f 0.8M[90.5. 3 96.6., 89.711, 678425 948,13 91.74, 80.1420 91.9.,4 87.9
RoBiarge (Adpt™)t 6.0M|899.:5 96213 88.7129 66.5444 947+ 92.14; 83441, 91.04,7 87.8
RoBiarge (AdptH)T 0.8M|90.3+3 96315 87.7+17 663420 94.745 915+ 7294729 91.515 86.4
RoBiarge (LORA)T 0.8M|90.6+, 96215 90.2+,0 68.2+19 94.8+3 91.64, 852411 92.3.5 88.6
DeBxxi. (FT)* 1500.0M| 91.8 97.2 92.0 72.0 96.0 92.7 93.9 92.9 091.1
DeBxx. (LoRA) 47M|91.9+2 969412 92.6+6 72.4+11 96.0+1 929+, 9494 93.0+> 913

Table 2: RoBERTap;s, ROBERTay,., and DeBERTaxx;, with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. { indicates runs configured in a setup
similar to Houlsby et al. (2019) for a fair comparison.

20



Results (cont.)

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU  NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 35492M | 68.2 8.62 46.2 71.0 2.47
GPT-2 M (Adapter-)* 0.37M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter-)* 11.09M | 68.9 8.71 46.1 71.3 2.47
GPT-2 M (Adapter™) 11.09M | 673.¢ 850L¢7 46.0L, 707+, 244,
GPT-2 M (FT™oP2)* 25.19M | 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M | 69.7 8.81 46.1 71.4 2.49
GPT-2M (LoRA) 035M | 704., 885.0 468., 71.8.; 253,
GPT-2 L (FT)* 774.03M | 68.5 8.78 46.0 69.9 2.45
GPT-2L (AdapterL) 0.88M 69.1:1:.1 8.681_03 46.31.0 71.41.2 2.49:1:,0
GPT-2 L (Adapter") 23.00M | 6893 870104 46.1r; 7131, 245,
GPT-2 L (PreLayer)* 0.77M | 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 077M | 704, 889, 468., 720., 247,

Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable
or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates
numbers published in prior works.

21



Results (cont.)

# Trainable | WikiSQL MNLI-m SAMSum
Model&Method Parameters | Acc. (%) Acc. (%) R1/R2/RL
GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5
GPT-3 (BitFit) 14.2M 713 91.0 51.3/27.4/43.5
GPT-3 (PreEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 (Adapter™) 7.1M 71.9 89.8  53.0/28.9/44.8
GPT-3 (AdapterH) 40.1M 132 91.5 53.2/29.0/45.1
GPT-3 (LoRA) 4. M 73.4 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37. M 74.0 91.6 53.4/29.2/45.1

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form
validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on
SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results
on WikiSQL have a fluctuation around +0.5%, MNLI-m around +0.1%, and SAMSum around
+0.2/£0.2/%0.1 for the three metrics.



Comparison to other PEFTs

WikiSQL MultiNLI-matched

0.75 0.92
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Figure 2: GPT-3 175B validation accuracy vs. number of trainable parameters of several adaptation
methods on WikiSQL and MNLI-matched. LoRA exhibits better scalability and task performance.
See Section E.2|for more details on the plotted data points.
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Why r=1 works well in practice?

e Let A,_g and A, _¢4 be the learned matrices for r = 8, and 64.
* Do they extract similar features from the token embeddings?
* How to measure this?

* Each A can be considered as a subspace.

* Find how similar these two subspaces are?



Why r=1 works well in practice? (cont.)

r
= Ax = z o;V; U] X
i=1

T
— Ax = z O'i<ui,X)Ui
i=1

Pick highest g; , compare the corresponding u;’s in two A’s



Why r=1 works well in practice? (cont.)

* Grassmann distance:

- | |U1’311‘r_‘:8 U;zl'r:64 | |%‘
= T € [0,1]
min(z, j)

(]S(A'r':Sa A’r‘:647 7:) ])
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Why r=1 works well in practice? (cont.)

¢(AI’=641AI‘=8I Irj)

e

3212345678 12345678
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Figure 3: Subspace similarity between column vectors of A,_g and A,—_g4 for both AW, and AW,,.
The third and the fourth figures zoom in on the lower-left triangle in the first two figures. The top
directions in 7 = 8 are included in r = 64, and vice versa.
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AW only amplifies directions that are not
emphasized in W

r=4
AW, W, Random

r = 64
AW, W, Random

|UTWV | =

032 2167 0.02

1.90 3771 0.33

|W,||r = 61.95

1AW, || = 6.91

|AW, |[r = 3.57

Table 7: The Frobenius norm of U W,V " where U and V are the left/right top r singular vector
directions of either (1) AW, (2) Wy, or (3) a random matrix. The weight matrices are taken from

the 48th layer of GPT-3.
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Unified View of PEFT methods (cont.)

e Adapter
h — h+ f(hWaoun) Wep



Unified View of PEFT methods (cont.)

* Prefix tuning
head = Attn(xW,, concat( Py, CW},), concat(P,, CW,))
CWwW,
= (1 — A(z))softmax(x W, W, C')CW, + \(x)softmax(zW,P, )P,

- softmax(quconcat(Pk,CWk)T) [ o ]

_

= (1 - A(=z)) Attn(xW,, CW},, CW,,) +A(x) Attn(zW,, Py, P,)
standmc;;ttenﬁon indepenagnt of C

> exp(Wy Py );
> exp(zW, Pyl ); + Zj exp(xW,W,'CT);

AMz) =

h < (1= Xx))h + Xxz)Ah, Ah := softmax(xW,P, )P,
h < (1 - Ax))h + Az)f(xW1)W;

30



Unified View of PEFT methods (cont.)

Table 1: Parameter-efficient tuning methods decomposed along the defined design dimensions. Here, for clarity,
we directly write the adapter nonlinear function as ReLU which is commonly used. The bottom part of the table
exemplifies new variants by transferring design choices of existing approaches.

Method Ah functional form  insertion form modified representation  composition function
Existing Methods

Prefix Tuning softmax(zW, P, ) P, parallel head attn h+ (1-—Ah+)MAh

Adapter ReLU(hWoun) Wy sequential ffn/attn h < h+ Ah

LoRA T Waown Wap parallel attn key/val h+ h+s-Ah
Proposed Variants

Parallel adapter ReLU(AW4oun) Wy parallel ffn/attn h < h+ Ah

Muti-head parallel adapter ~ ReLU(hWgoun)Woyp parallel head attn h < h+ Ah

Scaled parallel adapter ReLU(hWoun) Wy parallel ffn/attn h+< h+s-Ah
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Unified View of PEFT methods (cont.)
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Remarks

* Prefix tuning can be thought of as a “parallel” computation to the
PLM layer, whereas the typical adapter is “sequential” computation.

» Adapters are more flexible w.r.t. where they are inserted than prefix
tuning

» Adapters typically modify attention or FFN outputs, while prefix tuning only
modifies the attention output of each head.

* Prefix tuning applies to each attention head, while adapters are
always single-headed, which makes prefix tuning more expressive.



