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—Language definition




ENLIER[ Definition

Chomsky (1959: 137) “A language is a collection of
sentences of finite length all constructed from a finite alphabet (or,
where our concern is limited to syntax, a finite vocabulary) of symbols.”

DNA Language Double Helix

=  DNA
Sentences out of {A,1,C,G} i
e, l
=3
O DNA ‘
RNA Language 2 ] ECEE
— H P
= U c| Ic]
Sentences out of {A,U,C,G} | mRNA E H ﬁ L)
[ mRNA A—
v ﬂ wl 18 H ¢! lel
. c 1 1 ‘
Protein Language o H v
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Sentences out of - ‘ 8 p—
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—Distributional Hypothesis




Distributional [g)/¢ a1 4 ESHE

Firth (1950) “a word is characterized by the company it keeps”

" JR. Firth
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A picture of a good friendship circle in Persian culture
Made with Bing Image Creator. Powered by DALL-E



Language modeling

p(start, w1, wa, ..., w,, stop)
n+1

p(start, wy, wo, ..., w,,stop) = H y(w; | wi, wa, ..., wi—1)
i=1

=
—
>
L
0C




N-gram Language modeling

n—+1
p(start, wy, wa, ..., wy,,stop) = H y(w; | wi, wa, ..., wi—1)
i=1

Bi-gram
n—+1
p(Starta Wi, W2y - .., Wn, StOp) — H ﬂ)/(wz | wi—l)
i=1
th
Markov (m order)

=
—
>
L
0C

p(start, wq, wa, ..., w,,stop) = H Y(w; | Wi—my oy Wi—_1)
i=1




Neural Language modeling

p(start, wy, wo, ..., w,, stop)

hidden hidden  hidden last
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Skip-gram - Similar to Language Models

The left context of x¢ The right context of x¢

1 |
| [ |

Xe-N Xe-N+1 Xeen-1 Xe4N

00000000 I EErrrrrrrry (00000000 | cutput layer

| 00000000 hidden layer

(00000000 input layer
Xt

Maximizing the following likelihood:

=
—
>
L
0C

M T

Z Z log p(w, | wy) Z Z log (1 + e 8w, w")) + Z log (1 + 5wt w”))

t=1 cg[t—N,t+N] > t=1 | c€[t—N,t+N] wrENY ¢ )
elc vt

p(UQ |Uh;9)== z:aec‘ﬁ“"“ S(uu,'uk)::1%T--vc




Fixed embeddings - Skip-gram
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(00000000 input layer
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Fixed embeddings - Skip-gram




ELMO: Deep contextualized word representations

Intermediate (= ) [= =~ [= [ = ) [ ) [ — ]
word vectors _—' \ N\ | "

'Forward | o ‘ '
O LsTM \ LSTM = -
l.‘. l

Intermediate N )= h =) [~
word vectors : \ - |

Layer 2 f

[ Forward

Layer 1 <

|
'Backward
| D B
raw word —
vectors

=
—
>
L)
0C

ELMo (Peters et al., 2018; NAACL 2018 best paper)
® Train two separate unidirectional LMs (left-to-right and right-to-left) based on LSTMs
e Feature-based approach: pre-trained representations used as input to task-specific models




— Self-attention




How to contextualize the fixed embeddings?
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Self-Attention Idea

Input embeddings Output embeddings

L1y L2yeeeydln Y1,Y2, - .-y Yn

oLl g yg0 olo s 9,50 I i )9
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Self-Attention




Self-Attention




@ Wisare learnable projection matrices
| g = Wyx;, ki = Wiz, v; = Wyz;
‘ Wi = qiTkj/\/c_i, Wz’j — softmax(wz-j), Y; — Z Wz-jvj.

|

To avoid arbitrarily large (positive or negative)
dot product values

Attention




Attention

* |nputs: a query q and a set of key-value (k-v) pairs to an output
* All presented as vectors

* Qutput is weighted sum of values

* Weight of each value: inner product of query and corresponding key

ed'Fi

Alg, K,V) =) _,
| > ed"s

‘l /’/Z.




Multihead Atte jlife]y

- J—
k; = W, x;, v, = W, x;

(!

r o __ T r o __ r ‘
W/ = softmax(wy;), Yy = E W/ v;,
J

2]

Concat

Scaled Dot-Product
Attention 4




Matrix Attention




Matrix Attention

softmax(




Matrix Attention

ATTENTION HEAD #0
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Matrix Attention

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
ATTENTION ATTENTION ATTENTION

HEAD #0 HEAD #1 HEAD #7




1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the ©~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN
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— Transformers




Attention Is All You Need

Ashish Vaswani” Noam Shazeer™ Niki Parmar”™ Jakob Uszkoreit™
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | Fukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aldan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkorelt, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762




—Next lecture




Transformer Language Mmodaels

Lecture 3 Transfarmers (ii)

» | o ‘.
-»

......‘.,..

Oct. 10th 2023

Artificial Intelligence Group
Computer Engineering Department, SUT



Transformer Architectures

* Encoder-only (e.g., BERT): bidirectional contextual embeddings

e Decoder-only (e.g., GPT-x): unidirectional contextual
embeddings, generate one token at a time

* Encoder-decoder (e.g., 15): encode input, decode output

Encoder-Decoders




@ Wisare learnable projection matrices

| g = Wyx;, ki = Wiz, v; = Wyz;
® w,=d"k/Vi,

Attention

Wz’j — softmax(wz-j),

Yi = Z Wijv;.
J

REVIEW



Why scaling by fV&ks @ &°

@ Wisare learnable projection matrices

| g = Wyx;, ki = Wiz, v; = Wyz;
- kj/\/c_i, Wz’j — softmax(wz-j), Y; = Z Wz-jvj.
J

To avoid arbitrarily large (positive or negative)
dot product values




W = ql-Tkj/\/Z’, W,; = softmax (wij>, y;, = Z W
J

Assume that q and k are unit vectors with dimension d, whose E Cli] —F [k- —
dimensions are independent RV with the following properties:
\"

d ) -
E[q . k] =E Z qikl‘ V&I’[q . k] = var Z qiki
=1 ~ =1 .

d J . -

= =1 > l] -

d p )

— 2 E |¢,| E |4} = Z var [%‘] var [kl.] B q; k]
i=1 i:1 _ ' J
= 1

1
9

More detailed proof: https://github.com/BAl-Yeqi/Statistical-Properties-of-Dot-Product/blob/master/proof.pdf




3

UG- L RV identical ?

l Vol

Wi = ql.Tkj/\/c_Z, W,; = softmax <sz>> y;, = 2 W
J




UL [ RV identical? Better not to be identical!

q; = W x;, ki=Wx, v,=Wyx

l

W, _qlk/\/c_l W, = softmax( U), inZWzJVJ

matrix_1

1

- 0.5
0

I—O.S
-1




Multihead Att

g = (al K VA, Wy = softmax (wp). 5 = 3 Wiy,
J

V; = Wy concat [yila yiz’ " ] |

REVIEW
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delli[ehiEUEMmbedding

A Assign a number to each time-step within the [0, 1]
* Time-step differences are not consistent in different sentences.

d Assign a natural number to each time-step

* Long sentences
* Differences in the training and the inference



del1i[ehiEII Embedding

. dUnique encoding for each time-step.
. dConsistent distance between time-steps in varying sentence lengths.
. dEasily adapts to longer sentences with bounded values.

y . dDeterministic output.



delIile il Embedding types?

ABSOLUTE VS. RELATIVE POSITION ENCODING

NS u'/hl/r’
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delIile il Embedding types?

ABSOLUTE VS. RELATIVE POSITION ENCODING

(S ol

A ol LA
e o

\ a1 aiz2 daijs P11 P12 P13 T L T2
-
« , , .
> o @21 Q22 Q23 P21 P22 P23 r-i1 Ty T1
‘\3 az1 Qaz2 ass P31 P32 P33 r—2 T-1 Ty
@ - - - - - -
Attention Matrix Absolute Position Bias Relative Position Bias

Absolute position embeddings are favorable for classification tasks and
relative embeddings perform better for span prediction tasks.

Philipp Dufter, Martin Schmitt, and Hinrich Schitze. 2022. Position Information in Transformers: An Overview. Computational Linguistics, 48(3):733—-763.


https://aclanthology.org/2022.cl-3.7

Adding Position Embeddings

Input Embedding U G .Q X d
Position Embedding P - ,{ X d

—
- 1 ,.

A = \/E(U 1 P)W(Q)W(‘”)T(U +P)T

VI = SoftMax(A)(U + P)W®)

O = LayerNoer(M + U+ P)

f‘ — RpLU(C)W(fl’ + b(fl))W(fQ) + b(fQ)
7 = LaycrNornll(é - f‘)

Philipp Dufter, Martin Schmitt, and Hinrich Schitze. 2022. Position Information in Transformers: An Overview. Computational Linguistics, 48(3):733—-763.



https://aclanthology.org/2022.cl-3.7

Modifying Attention Matrix

Input Embedding U G .Q X d
Position Embedding P G ,@ X d

~

A~ TUWOWKTyT + PW(@OwW®E Tyt + UW@OwE TpT + PW(@OW®KETpT
—_— e e —

unit-unit ~A unit-position position-position

Philipp Dufter, Martin Schmitt, and Hinrich Schitze. 2022. Position Information in Transformers: An Overview. Computational Linguistics, 48(3):733—-763.



https://aclanthology.org/2022.cl-3.7

delIile il Embedding types?

GPT2 sinusoid
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Yu-An Wang and Yun-Nung Chen. 2020. What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional
Encoding. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6840—-6849, Online.
Association for Computational Linguistics.


https://aclanthology.org/2020.emnlp-main.555
https://aclanthology.org/2020.emnlp-main.555

Positional Embedding

We chose this function because we hypothesized it would allow the model to easily learn
to attend by relative positions, since for any fixed offset k, PEpos+k can be represented
as a linear function of PEpos.

TYE, =E,.,

(I)(lk) 0 0 b — COS (/Imk) sin (/Imk)
0 Pw® 0 " —sin (xlmk) COS (xlmk)
2
(k) —
=10 o 0
0 O (I)g’?n e .= 10000 'model

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).




S e]le 1l POsitional Embedding

We chose this function because we hypothesized it would allow the model to easily learn
sin(wy, . 1), If i =2k P 1
cos(w,.0),ifi=2k+1 1000024
i
) ||||||

to attend by relative positions, since for any fixed offset k, PEpos+k can be represented
h |

as a linear function of PEpos.
o ||
ll‘lh N n (] 12r

W u'f'
Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
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Transformer block

» Each block has two “sublayers”
1. Multihead attention
2. Feed-forward NNet (with ReLU)

* Residual: x + Sublayer(x)

* Layernorm changes input
to have mean 0 and variance 1

Repeat for number of
encoder blocks

ﬁ

\

Probabilities

Softmax
N

Linear
N

Add & Norm
N

Feed-Forward

[—)

1

Add & Norm
N
Masked Multi-

Head Attention

W

Add Position
Embeddings

T

Embeddings

Decoder Inputs



Layer normalization

Main idea: batch normalization is very helpful, but hard with sequences of different
lengths
Resulting more stable input to the next layer
- Simple solution: “layer normalization” — like batch norm, but not across the
batch Batch norm Layer norm

d-dimensional vectors

- «— for each sample in batch different dimensions of a
Tdim G102 0B

\‘ﬂ:iia. o = ii(au—,u)Q /1:12(1"/0: 1Zd:
B i=1 : \ =t / o d i=1 ’ \ ¢
I-dim
_ — U . a—
P 4 =



Why transformers?

Probabilities

Softmax
N

Linear
N

Pros: Add & Norm
N

Feed-Forward

1

ﬁ Add & Norm
N
Masked Multi-

Head Attention

Repeat for number of
encoder blocks

e —

Cons:

- Attention computations are technically O(n2) \ Block

- Somewhat more complex to implement (positional encodings, etc.) Add Position
Embeddings

Embeddings

Decoder Inputs



—Encoder Language Model
— BERT LM Architecture




Masked Language Modeling (MLM)

open

T

a

T

bank

!

Layer 2

Layer 2

Layer 2

T

T

Layer 2

Layer 2

Layer 2

T

<s>

the man went to [MASK] to buy a [MASK] of milk

open

T

a

store

T

open

T

® (Q: Why we can’t do language modeling with bidirectional models?

)

bank

T

Layer 2

Layer 2

Layer 2

T

T

T

Layer 2

Layer 2

Layer 2

!

<s>

T

open

gallon

T

()

® Solution: Mask out k% of the input words, and then predict the masked words

53



BERI pre-training; putting together

e BERT-base: 12 layers, 768 hidden size, 12 attention heads,

i 110M parameters
Forward

N x ~Add & Norm |
A’jdf:or: e BERT-large: 24 layers, 1024 hidden size, 16 attention
Al:téntiii heads, 340M parameters

EEE!’S,’;;' e & ® Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
e Max sequence size: 512 word pieces (roughly 256 and 256 for

two non-contiguous sequences)

Inputs ® Trained for 1M steps, batch size 128k



Sentence-level tasks

® Sentence pair classification tasks:

MNLI

QQP

Premise: A soccer game with multiple males playing.

Hypothesis: Some men are playing a sport.

Q1: Where can | learn to invest in stocks?

Q2: How can | learn more about stocks?

® Single sentence classification tasks:

SST2

rich veins of funny stuff in this movie

{entaillment, contradiction, neutral}

{duplicate, not duplicate}

{positive, negative}

55



Token-level tasks

® Extractive question answering e.g., SQUAD (Rajpurkar et al., 2016)

P =,

P
/ Question: The New York Giants and the New York Jets play

at which stadium in NYC ?

Context: The city is represented in the National Football
SQuUAD League by the New York Giants and the New York Jets ,
although both teams play their home games at MetLife
Stadium in nearby East Rutherford , New Jersey , which

\ hosted Super Bowl XLVIII in 2014

N
\\

e Named entity recognition (Tjong Kim Sang and De Meulder, 2003)

CoNLL 2003 NER John Smith lives in New York
B-PER |I-PER O O B-LOC I-LOC

] R o - g - = s s i - 1 ) O 0 )
1" 5 1 T S =011 . } 9 ! P,
{ AL A 1l1L1IL) e LI L r s

S -

N,
G

\

MetLife Stadium
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—Transformer Block
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—Encoder Language Model




Encoder LM Encoder Language Model

e BERT )
P(x) = HP(xi | Xps s X s Xy s v es Xp)
i=1

e Variations

sentence-level tasks

~
Clas Chass

o L
Label

—————————— —
&) Gr=l) GO =) - L=
BERT BERT hl 9 s oo o hT

///'—’— " ? 9 ' N -

N;P Mgiw =3 (=l ] (o m]le] - [l a]a] - [s]
— . o o o O -
G- Caliee)z)- (&) SHELE TN £=) CE e

Semaron 1 Sendencn 7 Singhe Sernne
B ERT (a) Sartence Palr Classifcaton Tasks '0) Single Sentenca Class!icat on Tasks:
MN.. QOP, QNL', STS-B, MRFC, SET-2, Col A
RTE, SWAG
[fealle ]~ [ (o]l (o]
™ ~ - - - ~ token-leve| tasks
- L ™ ™ ™

pr— | r—

(o). (o). (=) 0 e : ’\\5.\314.}’«{%%4‘

[ >SS
o e | [ - O PR
GBS B 0% DS 6 celr i) = L%
| Masked Sentanca A Masked Sentenee B ‘
l\\_ Urlabeled Sentence A and O Pair e GErl
N - sl & |~ [& ][ Snl[ i ] [8 o o | &) - [
Pre-training O e e _ .,.,l-i.\. s | ——
I w ““ - ;": \Tl"‘ \J I : ' ) I "-’_*' \ Tok 2 | . | Toh N
_[_I . I i Xl , e o o , Xt
Cusatisn Parsyraph Sy Serle oy
(c) Quastan Answarng Tasks: () Singla Sartencza Tagging Tasks:
SQUAD v CoNLL-2003 NZ5

hi,...,h = Decoder (X1, ..., X{)

Xmask =~ Ahmasked + b




=, BERI:key contributions
%4

It is a fine-tuning approach based on a deep Transformer encoder
The key: learn representations based on bidirectional context

Why? Because both left and right contexts are important to
understand the meaning of words.

Example #1: we went to the river bank.

Example #2: I need to go to bank to make a deposit.

Pre-training objectives: masked language modeling + next sentence prediction

State-of-the-art performance on a large set of sentence-level and token-level tasks

01



MLM:masking rate and strategy

® (Q: What is the value of k?
® They always use k = 15%.

® Too little masking: computationally expensive (we need to increase # of epochs)
® Too much masking: not enough context

® See (Wettig et al., 2022) for more discussion of masking rates

® (: How are masked tokens selected?
® 15% tokens are uniformly sampled

® [s it optimal? See span masking (Joshi et al., 2020) and PMI masking (Levine et al., 2021)

Example: He [MASK] from Kuala [MASK] , Malaysia.



Next Sentence Prediction (NSP)

® Motivation: many NLP downstream tasks require understanding the relationship
between two sentences (natural language inference, paraphrase detection, QA)

® NSP is designed to reduce the gap between pre-training and fine-tuning

[CLS]: a special token [SEP]: a special token used
always at the beginning to separate two segments
Input = [CL‘S/] the man went to [MASK] store [SEI}:]/
They sample two contiguous
he bought a gallon [MASK] milk [SEP] Segments for 50% Of -the
Label = 1snext time and another random
segment from the corpus for
50% of the time
Input = [cLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label — NotNext

63



BERT Training

Dataset. Let D be a set of examples (x1.7, ¢) constructed as follows:

Let A be a sentence from the corpus.
With probability 0.5, let B be the next sentence.

With probability 0.5, let B be a random sentence from the corpus.
Let x1., = [[CLS], A, [SEP], B].

Let ¢ denote whether B is the next sentence or not.

Objective. Then the BERT objective is:

O0) = ), Erzyeacwn | ), —10g8pe(i | x1.L)| + —log pc | 1)),
(x1.L,¢)ED i€l S —
g —— next sentence prediction

masked language modeling

o4



BERI pre-training; putting together

® Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)

word vocab mapping embedding
Common hat E hat ]
words learn > learn — I Stanford
Variations { taaaaasty o taafi#f aaali# sty EE— é;nZzgeN tanior
misspellings laern — latttt ern ——— 4N)
fiovel Reins _t Transformerify =2 Transformer##f ify e
® Input embeddings:
Input [CLS] W my dog is {cute W | [SEP] he [ likes W play W ##ing 1 [SEP]
Token
Embeddings E[CLS] | Emy Edcg Eis I Ecute E:SEP] Ehe I Eli-(es play E“ing E[SEP]
3 t . . . . . + +* ¥ + s + Separate two segments
egmen
Embeddings EA EA EA EA EA EA EB EB EB EB EB r'd
e e L o e e L L L L e L o
Position
Embeddings Eo El E2 E3 E4 ES E6 E7 E8 E9 Elo

- Just two possible "segment embeddings": EA and EB.
- Positional embeddings are learned vectors for every possible position between 0 and 512-1.



Byte Pair Encoding (BPE)




o Step 0: Set up vocabulary.
« Step 1: Represent words using characters + end token </w>.

o Step 2: Count character pairs in vocabulary.
e Step 3: Merge highest frequency pairs, add new n-gram.
o Step 4: Continue merging until reaching desired vocab size or merge count.

Unicode: we can run BPE on bytes instead of Unicode characters (Wang et al. 2019).

As we have (144,697) of Unicode characters.

re-l-at-_;g
re-l-at-ed
un re-l-at-ed
un re-L-ated
un rel-ated
un-related
unrelated

u-n-
u-n re- 1 -e- d
u-n
u-n


https://arxiv.org/pdf/1909.03341.pdf

BERI pre-training; putting together

-

| |
®

Masked Sentence A Masked SentenceB/

Unlabeled Sentence A and B Pair

Pre-training

o« MLM and NSP are trained together
[CLS] is pre-trained for NSP

o Other token representations are trained
for MLM
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Fine-tuning BERT

“Pretrain once, finetune many times.”

sentence-level tasks

Class
Label

Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColLA

RTE, SWAG

69



Fine-tuning BERT

“Pretrain once, finetune many times.”

token-level tasks

Start/End Span O B-PER O

(o (o [Gnz] . [reen]

Question Paragraph Single Sentence

(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
SQuUAD v1.1 CoNLL-2003 NER



Fine-tuning BERT

Sentence 1 Sentence 2 Single Sentence

 For sentence pair tasks, use [SEP] to separate the two segments with segment embeddings

* Add alinear classifier on top of [CLS] representation

[a



Fine-tuning BERT

Start/End Span

ol es] - [

Question Paragraph Single Sentence

For token-level prediction tasks, add linear classifier on top of hidden representations

Q: How many new parameters?

72



Finetuning Paradigm in NLP

NSP Mask LM

Mask LM

*

(o |(rwo] .. (o] [Cmem [ ] .

Masked Sentence A Masked Sentence B
\ Unlabeled Sentence A and B Pair /

Pre-training

Question Paragraph
*
Question Answer Pair

Fine-Tuning




£ coder LM BERT Extensions

e BERT

o Models that handle long contexts (> 512 tokens)

O Longformer, Big Bird, ...
O Multilingual BERT
O Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary

e Variations

O BERT extended to different domains

O SciBERT, BioBERT, FinBERT, Clinical BERT, ...
o0 Making BERT smaller to use

o DistillBERT, TinyBERT, ...




£ coder LM BERT Extensions

e BERT

® RoBERTa (Liu et al., 2019)
¢ Trained on 10x data & longer, no NSP
® Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuUAD)

e Still one of the most popular models to date

e Variations

e AILBERT (Lan et al., 2020)
® Increasing model sizes by sharing model parameters across layers

® [ess storage, much stronger performance but runs slower..




What happened after BERT?

Lots of people are trying to understand what BERT has learned and how it works

A Primer in BERTology: What We Know About How BERT Works

Anna Rogers Olga Kovaleva Anna Rumshisky
Center for Social Data Science Dept. of Computer Science Dept. of Computer Science
University of Copenhagen University of Massachusetts Lowell University of Massachusetts Lowell
arogers@sodas.ku.dk okovalev@cs.uml.edu arum@cs.uml.edu

 Syntactic knowledge, semantic knowledge, world knowledge...
e How to mask, what to mask, where to mask, alternatives to masking..

/0



Reducing Attention Cost

Encoder LM

e BERT . BigBird [Zaheer et al., 2021]

e Variations Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD



https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2007.14062.pdf

—Decoder Language Model
- GPT LM Architecture




Decoder Language Model

Decoder

e GPT-models

Autoregressive (AR) models use decoder stacks in generation, aiming to
maximize log-likelihood via forward autoregressive factorization:

Xt+1

Linear

T
max log py(xi, ..., Xp) & Z log py(x, | x{5 s X,_1)

hi,...,h = Decoder (X1, ..., X{)
Xt+1~Aht + b




Decoder Language Model

Decoder

e GPT-models

T
meax log py(xq, ..., x7) & 2 log py(x, | X1, ...sx,_1)

=1
| orders |
Xt+1
DECODER BLOCK #2 T
( | ) Linear
( ) h] 9 e oo o hT
\\

[Masked Self-Attention )

' MI
Input ‘

<S> robot must obey
|
Xl 9 o 9 Xt
BERT vs. GPT
Self-Attention Masked Self-Attention

[ _] [ I j hi,...,h; = Decoder (xi, ... , Xy

Xt+] —~ Aht + b

http://jalammar.github.io/illustrated-gpt2/




Generative Pre-Trained Transformer (GPT)

Decoder
o Transformer decoder with 12 layers.

e GPT-models

o Byte-pair encoding with 40,000 merges

o Trained on BooksCorpus: over 7000 unique books.
o Contains long spans of contiguous text, for learning long-distance

Text Task D5 2 .
Prediction: [ECIasEilor Classification Start Text Extract }’ Transformer | Linear
Entailment Start Premise Delim | Hypothesis | Extract |+ Transformer [~ Linear
Layer Norm A
Eeed Forward Start Text 1 Delim Text 2 Extract | —> Transformer |
3 Similarity = Linear
12x — :
Start Text 2 Delim Text 1 Extract | - Transformer
Layer Norm o
! : Start Context Delim Answer 1 | Extract | > Transformer =~ Linear [—
Masked Multi A
Self Attention %
t Multiple Choice | Start | Context | Delim | Answer2 | Extract ||+ Transformer |+ Linear -—EE
Text & Position Embed Start Context Delim | Answer N | Extract |» Transformer ( Linear —

Radford et al., 2018 https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf



https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Generative Pre-Trained Transformer (GPT)

Decoder

—1 ~\
e GPT-models |
| DECODER

| Y

Token Positlional

Embeddings Encodings

Positional encoding far token #1

+
Token embedding of <s> iii
<S> [ [ |||
1024
HEEN

(" DECODER N

( Feed Forward Neural Network )

Masked Self-Attention
30% 50% 18%
DECODER

\_ y,

1 H B H

<S> a robot must obey the orders given it

l 2 ! 5 6 & o . {024




Decoder

¢ GPT-models

GPT released June 2018

GPT-2 released Nov. 2019 with 1.5B parameters

GPT-3: 175B parameters trained on 45TB texts o

-7
EXTRA
LARGE

CP1-2 [« )
| ARGE

N F)T /-) ( N
] ~/ 36 ( DECODER

D Y I\v/]r j) L J[\\A . s o 6 DECODER
G |-~
_C‘[\ AN | f; ( DECODER \ 5 DECCDER
LAV s ( DECODER a( DECODER

/'3_ T\ Peoe

12 DECUDER ) 3 ( DECODER ) |2 ¢( DECODER

co s 2 ( DECODER 2 ( DECODER 2 ( DECCDER

1'3 DECCDER DECODER CECODER ) 1'/ DECCDER

— J . ( J \ 1 7/ O\ j

Mode! D mensional ty: 768 Modezl Dmensionality: 1024 Model Dimensionality: 1280 Maodel Dimensionality: 1600




DeCOder Model Data

GPT-2 (Radford Context size: 1024 tokens WebText (45 million outbound links from Reddit
et al. 2019) 117M-1.5B parameters with 3+ karma); 8 million documents (40GB)
e GPT-models
GPT-3 (Brown et Context size: 2048 tokens Common crawl + WebText + “two internet-based
al. 2020) 125M-175B parameters books corpora” + Wikipedia (400B tokens, 570GB)
Zero-shot Few-shot
The model predicts the answer given only a natural language In addition to the task description, the model sees a few
description of the task. No gradient updates are performed. examples of the task. No gradient updates are performed.
ranslate E 'nglsh to French: task description Translate Z[‘.qlig" to French: task description
cheese => prompt sea otter => loutre de mer exampies
peppermint => menthe poivreéee
plush girafe => girafe peluche
One-shot cheese => prompt

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer exampie
cheese => prompt

Brown et al. (2020, “Language Models are Few-Shot Learners”
hitps://arxiv.org/pdf/2005.14165.padf




—Enc-Dec Language Model
— Attention is all you neeq, 15, BART




Encoder-Decoder

Earlier Models

Model TS

Model BART

Beam Search

Basic Idea of encoder-decoder

O The encoder encodes the input into a context vector

o0 The decoder produces task-specific output given the context

#* Output: contextually relevant, variable-length

o Also known as seqg-to-seg model




Earliest works

Encoder-Decoder

Earlier Models o0 Machine Translation using RNNs
Model T5
Model BART ht (the hidden state of N
Bricoder at tims 1) lch | esse | gerne | Apfel
Beam Search o ,0 ,0 ,0 O Ol o] o e
O O O O O O O . O . Q
@ o o o o | OT(oo[|e[
It Tamnt Taml Jaml | ol o] 0] |e
I like to eat anle/s \ I g } j J
X=(X1,""".Xm)

llya Sutskever, Oriol Vinyals, Quoc V. Le,
Sequence to Sequence Learning with Neural Networks. NIPS 2014: 3104-3112



https://dblp.org/db/conf/nips/nips2014.html#SutskeverVL14

Encoder-Decoder

Earlier Models

Model TS

Model BART

Beam Search

Earliest works

o Machine Translation using RNNs with attention mechanism

Ich

(0O00O0]

Yt Alignment History

esse gerne Apfel s, (the hidden state
6‘ ’6 ® of decoder at time t) | like to  eat apples
Lol ol lel ch . @ O O O O
8 8 : ‘ esse 2 () O O @ O
o| |0 T'\Perne as O . O O O
(A0 O 0 O @

Q1 Aix™ a ;4 A 'S[ — O-('S[_J. ’ -y[_]. ’ (.[)
T B0 T hy (the hidden

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio,
Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

® . O 3 O ) O Y @® | state of encoder f-’t,]‘ — (I..(.S‘t_l, hj)
O O O O O at time 1) | ( )
O O O O @) . Cl[) ij
.<—.(_.lE Cinml Xt g — m
I like to eat apples -

X=(X1," " Xm) Ct = 7 ey JhJ



Earliest works

Encoder-Decoder

. Output
Earlier Models Probabiltics

O Introducing transformers ( Soﬂfm ]

1
MOdel T5 | Linear |

O Multihead attention
Feed

O For machine translation —{(Adc &rNorm ) A;T”&':;: il

Attention

Model BART

Beam Search

Add & Norm

Masked
Multi-Head
Attention

n
Pr (v, yn | %) = [ Pr (i 1 yicys oo x) N | o (i,
l

/
/

O Targetseq vy= (yp ---,yTy) b
FPositional
> Encoding

Positional
Encoding

S

Inout Output
Embedding Embedding

1 T

Ashish Vaswani et al. Inouts Outputs
Attention is All you Need. NIPS 2017: 5998-6008. (shifted right)

O Source seq x = <x1, oo X

X




Translation Model

Encoder-Decoder

Earlier Models

( Softmax )

3

( Linear )

7Y

. P Add & Normalize

, : :
: ( Feed Forward ) ( Feed Forward )

Model TS

Model BART

Beam Search

i " .
; ( Self-Attention ) : ( Self-Attention )

e mmm el .- rerccccccel e cccrcrr e, e, e ...
POSITIONAL
ENCCDING

X1 ’ | | | X2 ‘ | | ‘
Thinking Machines

Reference: https://jalammar.github.io/




el Animation of the Translation Model

Earlier Models

Decoding time step: 1(2)3 4 5 6 OUTPUT
Model T5
f
MOdel BART T OO0 OO0 ( Linear + Softmax )
I B 4

Beam Search

ENCODERS DECODERS

EMBEDDING U t t 1
WITH TIME LT T T] [T T T [T T T] (T 1T
SIGNAL
EMBEDDINGS
o SUis dtudiant PREVIOUS
thd ) OUTPUTS

Reference: https://jalammar.github.io/




Encoder-Decoder

Earlier Models

e Model T5

Model BART

Beam Search

Basic Ildea of T5

o Text-to-Text Transfer Transformer
o Moving from task-specific fine-tuning of language models =P Single model for all

& Mask LM Mai LM \ /@ M“D Start/End Spam
= : =

20— —
BE BAMmEea A DE BB
. . ... >
- Ny {--p
BERT wle = = = u = » -......’ BERT
f=le]. [&l(Emlle]. [&] Felle]. [EllEmll=]. [&]
— g S e T ey gy — O e T ey 0 LT
! e ! o o] (T ][] .. (e ] ["translate English to German: That is good."

"Das ist gut."]

Masked Sentence A Masked Sentence B Question VY Paragraph
* " :
\\ Unlabeled Sentence A and B Pair Question Answer Pair col a sen e nce: The "
course is jumping well.

Pre-training Fine-Tuning

"not acceptable" ]

"stsb sentence1: The rhino grazed
on the grass. sentence2: A rhino

Unsupervised pre-training is arazing in a field."

Supervised fine-tuning

The cabs ___ the same rates as those This movie is terrible! The acting is bad and | "summarize: state authorities "six people hospitalized after

__ by horse-drawn cabs and were _ quite popular, was bored the entire time. There was no plot and dispatched emergency crews tuesday a storm in attala county.”
the Prince of Wales (the ____ King Edward nothing interesting happened. | was really to survey the damage after an

VIl) travelled in . The cabs quickly surprised since | had very high expectations. | want onslaught of severe weather in

_____known as "hummingbirds" for __ noise made 103 minutes of my life back!

by their motors and their distinctive black and __ —

livery.

Passengers __ the interior fittings were ____

when compared to

__ cabs butthere ___ some complaints the _ l

lighting made them too _to those outside _ . ( negative ]

| "[Task-specific prefix]: [Input text]” —gp “[Output text]”

charged, used, initially, even,
future, became, the, yellow,
reported, that, luxurious, horse-
drawn, were that, internal,




Encoder-Decoder

Earlier Models

Model T5

Model BART

Beam Search

Objective

Pretrain

BERTB ASE-sized

encoder-decoder
Transformer

Denoising
objective

C4 dataset

219 steps
235 or ~34B tokens
Inverse square root learning
rate schedule

Finetune

GLUE
CNN/DM
SQUAD
SuperGLUE
WMT14 EnDe
WMT15 EnFr

WMT16 EnRo

218 steps
234 or ~17B tokens
Constant learning rate



Encoder-Decoder Den0i5ing ObjeCtive

« Earlier Models
Original text

* Model T5 Thank you fer inviting me to your party last week.

. Model BART / /
Inputs

Thank you <x> me to your party <v> week.

« Beam Search

Targets
<x> for Inviting <v> last <z>




Encoder-Decoder

Earlier Models

Model T5

Model BART

Beam Search

Finetuning Examples

ColLA (GLUE). Sentence acceptability
Input: sentence, output: labels “acceptable” or “not acceptable”
Ex: “The course is jumping well.” -> not acceptable

STSB (GLUE): Sentence similarity
Input: pair of sentences, output: similarity score [1,5]
Ex: “sentence1: The rhino grazed. sentence2: Arhino is grazing.” -> 3.8

OOPA (SuperGLUE): Causal reasoning

Input: premise and 2 alternatives, output: alternative1 or alternative2

Ex: “Premise: | tipped the bottle. What happened as a RESULT? Alternative 1: The liquid in the bottle

froze. Altemative 2: The liquid in the bottle poured out.” => alternative2

EnDe (Translation):

“translate English to German: That is good” -> “Das ist gut”

CNNDM (Summarization):

“summarize: state authorities dispatched...” -> “six people hospitalized after storm”™



Encoder-Decoder VOcab

Earlier Models ¢ 32,000 wordpieces shared across input and output

Model T5 * Pre-training is English, but fine-tuning includes German, French, and Romanian

Model BART

lllllllllllllllllllllllllllllllllllllllll

: ( Softmax )
',,( Add & Narmalize ) 2
: 3 3 C )

Linear

4
Beam Search [ e i el S :
‘*( Add & Normalize )
( Feed Forward ) ( Feed Forward )
--------- | SRRt b |
*( Add & Normalize )
R T
"( Encoder-Decoder Attention )
--------- %
;C Add & Normalize )
1 : * *
E ( Self-Attention ) ' ( Self-Attention )
— s— G &
ENCODING

X1’ | ‘ | X2 [ | [ |
Thinking Machines




el Every task is Question-Answering

« Earlier Models 90
e Model TS
« Model BART 20
« Beam Search =
Ll
70
60

Jan 17 Jan 18 Jan 19

Source: https.//paperswithcode.com/sota/question-answering-on-squadii-dev



https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev

el Every task is Question-Answering

Earlier Models 90 " N
Model T5 ERA
Model BART -
Beam Search =
70
60
Jan 17 Jan 18 Jan 19

Source: https://paperswithcode.com/sota/question-answering-on-squadi1-dev



https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev
https://paperswithcode.com/sota/question-answering-on-squad11-dev

Encoder-Decoder Trai n i ng Dataset

Earlier Models * C4 Dataset: Colossal Clean Crawled Corpus
* Web-extracted text

* English language only (langdetect)
viodel T5 * Extreme cleaning and filtering: 20TB =9 750GB

Model BART

The lemon, Citrus Limon (l.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

Beam Search

The tree's ellipsoidal yellow fruit is used for Organic dried lemons from our farm in
culinary and non-culinary purposes California.

throughout the world, primarily for its juice, Lemons are harvested and sun-dried for
which has both culinary and cleaning uses. maximum flavor.

The juice of the lemon is about 5% to 6% citric Good in soups and on popcorn.

acid, with a ph of around 2.2, giving it a sour

taste.

The origin of the lemon is unknown, though
lemons are thought to have first grown in
Assam (a region in northeast India), northern
Burma or China.

A genomic study of the lemon indicated it
was a hybrid between bitter orange (sour
orange) and citron.




Encoder-Decoder

Earlier Models

Model T5

Model BART

Beam Search

Trying different decisions for Pre-training and Fine-tuning

Architectures

Scale of the pre-training

Pre-training Objectives

Multi-task training

Pre-training dataset



Architecture - Attention Mask

Fully-visible Causal Causal with prefix

[ v S -BE0E8

| <00 B8

Earlier Models 24 | | [ [ A [ ]|
@]

Encoder-Decoder

g | | | | B ..
a | [ || i @
X X X X X

X1 X2 X3 X4 X5

’
.
4
\
(
=

Model T5

+— Input — Input
Model BART E[y1][y2][ ] Language model
8 S 5 % Yq ¥
e L
Beam Search a U ][ [

-
< ; .3» =
S (e l
@)
TS
a X Y Y
2 3 1 2
Ay By Ay Ay Translatlon That is good -> Das ist gut.
Translate English to German: That is good. Target: Das is gut. Translate English to German: That is good. Target: Das is gut.
Good” representation can look at “Translate English to German: That is. Target:
Translate English to German: That is good. Target:
Good’ representation can only look at “Translate English to German: That is
Architecture Objective Params Cost GLUE CNNDM 5SQuAD SGLUE EnDe EnFr EnRo
W Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 2698 3982 2765
Enc-dec, shared  Denoising /2 M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dee, 6 layers  Denoising /5 M/2  80.88 18.97 77.99 68.42 26.38  38.40  26.95
Language model Denoising Y M 71.70 17.93 61.14 55.02 25,09  35.28  25.86
Prefix LM Denoising F M 81.82 18.61 78.94 6&8.11 2643 37.98  27.39




Encoder-Decoder

Earlier Models

Model T5

Model BART

Beam Search

Pretraining Objective

High-level
approaches

Language
modellng

BERT-ster } — -
Deshuffling I

1.  BERT-style objective performs best.

2. Prefix LM works well on translation tasks.
3. Deshuffling objective is significantly worse.
- hd -

-~ -

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

Prefix language modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49

BERT-style (Devlin et al., 2018) 82.96 19.17 80.65 69.85 26.78 40.03 27.41

Deshuffling 73.17 18.59 67.61 58.47 26.11 39.30  25.62
Objective Inputs Targets

Prelix language modeling
BERT-style Devlin et al. (2018)
Deshuffling

Thank vou for inviting
Thank you <M> <M> mec to yvour party apple week .
party me for your to . last fun you inviting week Thank

me Lo your party last week .
(original text)
(original text)



Pretraining Objective

Encoder-Decoder

Earlier Models High-level Corruption
approaches strategies
Er . B 1. All the variants perform similarly.
Model TS moge"r?g Mask 2. “Replace corrupted spans” and “Drop
\, / . /

. <« r corrupted tokens™ are more appealing

4 ™
Replace
Model BART BERT-style ranils e becau§e target ge_quences are shorter,
\ / @ speeding up training.
4 ) 7)
Deshuffling Drop
Beam Search | , . -
Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

BERT-style (Devlin et al., 2018)  82.96 19.17 80.65 69.85 26.78 40.03 27.41
MASS-style (Song et al., 2019) 82.32 19.16 80.10 69.28 26.79 39.89 27.55
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82
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Different Corruption Rates

Encoder-Decoder

Earlier Models

) 1. Larger corruption rate leads to
orruption .
Model T5 biisbfovel Comuption e downstream pgrformance degradation.
approaches strategies e | 2. Larger corruption rate also leads to longer
sangisge ; J r lowin wn fraining.
Model BART modeing | 1 Mes< | /¢ — /. targets, slowing down training
BERT-style Rse;’;ize > <
> y \ 7 { 25% y
Beam SearCh Deshuffling Drop ; <
& J \. J 50% -

EnDe EnFr EnRo

&2

Corruption rate GLUE CNNDM SQuAD SGLU.

10% 82.82 19.00 80.38 69.55 26.87 39.28 27.44
* 15% 83.28 19.24 80.88 71.36 26.98 39.82 27.65
257 83.00 19.54 80.96 70.48 27.04 39.83 27.47

50% 81.27 19.32 79.80 70.33 27.01 3990 27.49
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Span-corruption rate

Encoder-Decoder

i ocatiin Sahpon o 1. Average span length of 3 works
Earlier Models opprozches _sirtegies oo J P well on most non-translation tasks.
modelng | 7| Mask - | 2. Span corruption produces shorter
. 3 - 15% 3
N Aolace < target sequences and leads to
Model T5 : —— W o : speedup in training.
Deshuffling ] { Drop <
» 50% 10
Model BART J
Span length GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Beam Search % Baseline (i.i.d.) 83.28 19.24 30.88 71.36 26.98 39.82 27.65
83.54 19.39 82.09 72.20 26.76 39.99 27.63
83.49 19.62 81.84 72.53 26.86 39.60 27.62
83.40 19.24 82.05 72.23 26.88 3940 27.53
10 32.80 19.33 81.84 70.44 26.79 39.49 27.69
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Encoder-Decoder

Earlier Models

Model T5

Model BART

Beam Search

Multitasking

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning 83.28 19.24 80.88 71.36 2698 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21  36.30  27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 2693 39.79 27.87
Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04

+ fine-tuning.

2. Practical benefit of Multi-task pre-training + fine-tuning is to monitor
downstream performance during pre-training.

1. Multi-task pre-training + fine-tuning works as well as unsupervised pre-training
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Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnkFr EnRo
% Encoder-decader  Denoising 2P M 33.28 19.24 80.88 71.36 26.98 39.82 27.65
EnCOder_DeCOder Enc-dec, shared Denoising ? M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising 2 M/2  80.88 18.97 77.59 68.42 26.38 38.40  26.95
Language model  Denoising B M 71.70 17.93 61.14 53.02 25.09 35.28  25.86
; Preflix LM Denoising P M 81.82 18.61 78.94 63.11 26.13  37.98 27.39
Earlier Models
Span length GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline (i.i.d.) 83.28 19.24 80.88 71.36 26.98 39.82 27.65
2 83.54 19.39 82.09 72.20 26.76 39.99 27.63
Model T5 3 83.49 19.62 8184 7253 26.86 39.65 27.62
5] 83.40 19.24 82.05 72.23 26.88 3940 27.53
10 82.85 19.33 81.84 70.44 26.79 39.49 27.69
MOdeI BART Data set Size GLUE CNNDM BSQuAD SGLUE EnDe Enlr EnRo
* C4 745GB  83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1'TB  81.46 19.14 78.78 68.04 26.656 39.34 27.21
RealNews-like 35GB 83.83 19.23 &0.39 72.38 26.75 39.90 27.48
Beam SearCh WebhText-like 17GB 84.03 19.31 81.42 71.40 26.80 39.74 27.59
Wikipedia 16GB 81.85 19.31 81.29 68.01 26.94 39.69 27.67
Wikipedia + TBC  20GB 83.65 19.28 82.08 73.24  26.7T7T 39.63 27.57

GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

Training strategy

% Unsupervised pre-training + fine-tuning 83.28 19.24 80.88 71.36 2698 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 2693 39.79 27.87
Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04

ke,
Scaling strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* Baseline 83.28 19.24 80.88 71.36 26.98 39.82 27.65
1 X size, 4X training steps 80.33 19.33 82.49 74.72 27.08 40.66 27.93
1 > size, 4x batch size R4 .60 19.42 R82.52 74.64 2707 40.60 27 84
2 X size, 2x training steps 86.18 19.66 84.18 77.18 27.592 41.03 2819
4% size, 1x training steps 85.91 19.73 83.86 78.04 2747 40.71  28.10
4> ensembled 84.77 20.10 83.09 71.74 28.06 40.53 28567 107

4> ensembled, fine-tune only  84.05 19.57 82.36 71.55 27.55 40.22  28.09




Model Size

Encoder-Decoder

Earlier Models

Model | Parameters | No. of layers | dpnodel des dwv | No. of heads
Model T5 Small 60M 6 512 2048 64 8
Base 220M 12 768 3072 64 12
Model BART Large 77T0M 24 1024 | 4096 | 64 16
3B 3B 24 1024 | 16384 | 128 32
11B 11B 24 1024 | 65536 | 128 128
Beam Search
Model GLUE | CNNDM | SQuAD | SGLUE | EnDe | EnFr | EnRo
Previous best 89.4 20.30 95.5 84.6 33.8 | 43.8 | 38.5
T5-Small 774 19.56 87.24 63.3 26.7 | 36.0 | 26.8
T5-Base 82.7 20.34 02.08 76.2 30.9 | 41.2 | 28.0
T5-Large 86.4 20.68 93.79 82.3 320 | 41.5 | 28.1
T5-3B 88.5 21.02 94.95 86.4 31.8 | 42.6 | 28.2
T5-11B 89.7 21.55 95.64 88.9 32.1 | 434 | 28.1
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BART

Bidirectional and Auto-Regressive Transformers (BART)

Encoder-Decoder

ABCDE
b4 K44

Earlier Models - A bidirectional encoder and an ( Bidirectional Autoregressive
: Encoder Decoder
autoregressive decoder. 41* 1 H’ r f’
Model T5 | A_B_E <s>A B C D
- BART achieves the state of the art results ’ g G )
. . . ALG . E. DE.ABC. LB ESAB
N the SU mmarlzatlon taSk- Token Masking  Sentence Permutation Document Rotation
Model BART I
(A.c.e. )y (aBC.DE.) <1 (A_.D_E.)
Token Deletion i
Maodel SQuAD 1.1 MNLI ELIS XSum ConvAlZ CNN/DM I indding
F1 Acc PPL PPL PPL PPL
Bea m Sea rc h BERT Base (Devlin et al_, 2019) 8R8.5 84.3
Masked Language Model 90.0 83.5 2477 7.87 12.59 7.06
Masked Seq2seq 87.0 82.1 2340 6.80 11.43 6.19
Language Model 76.7 80.1 21.40 7.00 11.51 6.56
Permuted Language Model 89.1 83.7 2403 7.69 12.23 6.96
Multitask Masked Language Model 89.2 824 2373 7.50 12.39 6.74
BART Base
w/ Token Masking 90.4 84.1 25.05 7.08 11.73 6.10
w/ Token Deletion 90.4 84.1 2461 6.90 11.46 5.87
w/ Text Infilling 9.8 84.0  24.26 6.61 11.05 5.83
w/ Document Rotation 77.2 73.3 33.69 17.14 19.87 10.59
w/ Sentence Shuflling 83.4 81.5 4187 1093 16.67 7.89
w/ Text Infilling + Sentence Shufiling 9.8 83.8 2417 6.62 11.12 5.41

Lewis, Mike, et al.

"Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension."
ACL 2020.
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Encoder-Decoder

Earlier Models

Model TS

Model BART

Beam Search

Beam Search for Decoding

E/D

<g>

Enc words:

the

and
SO
well

die langsten reisen fangen an , wenn es auf den stralen dunkel wird
- ’\
the longest travel begins when it gets | to | the streets . S 3
the longest travel when when it  &aposs to the streets
and oldest trips will if they gets d a roads in
so ftallest journeys begins , the becomes buried shore ad of
well russians travels begin as there grows into heaven street ™5
you icons jouney start in  this comes in its city to 54
pivot
when it
) ) &apos;s going to
begins  when it
gets to the streets
longest - travel  pooin  when it &apos;s going  to be
the longest &apos;s going  to
will start when it go
gets to the streets
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* Princeton COS 597G - Understanding Large Language Models
« Stanford CS224 - Deep NLP
@ » Stanford CS324 - Large Language Models
* Pittsburgh CS1678 - Deep Learning
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-« Dan Jurafsky and James H. Martin. Speech and Language
- Processing (3rd ed. Draft).
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